Группа 16. Физика

Дата: 27.06.2020

Урок № 116

Тип урока: комбинированный урок

Тема урока:

Электрический ток в вакууме. Электронные пучки. Электронно-лучевая трубка.

Цели урока:

Предметные:

- формирование понятий «электрический ток в вакууме», «термоэлектронная эмиссия»;
- изучение устройства и принципа работы вакуумных приборов на примере вакуумного диода и электронно-лучевой трубки.

Развивающая:

- развитие логического мышления, смекалки; формирование интереса к физическому эксперименту;
- активизация творческого мышления учащихся; умение анализировать, делать выводы.

Воспитывающая:

- воспитать интерес к физике для познаваемости мира и объективности наших знаний о нем.

Деятельностная:

- формирование у студентов способностей к самостоятельному построению новых способов действия на основе метода рефлексивной самоорганизации.

Образовательная:

- расширение понятийной базы по учебному предмету за счет включения в нее новых элементов.

Задание:

Ознакомиться с текстом по теме занятия. Написать в тетради краткий конспект. Ответить на контрольные вопросы, желательно в программе Word.

План конспекта:

- 1) Повторение
- 2) Вакуум
- 3) Термоэлектронная эмиссия
- 4) Вакуумный диод
- 5) Свойства электронных пучков и их применение
- 6) Электронно-лучевая трубка

Давайте вспомним:

Какое физическое явление называют постоянным током?

Электрический ток — это упорядоченное движение электрически заряженных частиц или квазичастиц. К частицам относятся электроны и ионы, а к квазичастицам — дырки. В металлах носители зарядов — электроны, в полупроводниках — электроны и дырки. В вакууме — электроны. В газах и электролитах — ионы.

Каковы условия существования электрического тока?

Для существования в проводящей среде электрического тока необходимо создать и поддерживать электрическое поле, которое обладает силовым воздействием на свободные электрические заряды, приводя их в упорядоченное движение.

Электрический ток в вакууме

До открытия уникальных свойств полупроводников в радиотехнике использовались исключительно электронные лампы.

Откачивая газ из сосуда (трубки), можно получить газ с очень малой концентрацией молекул.

Запомни

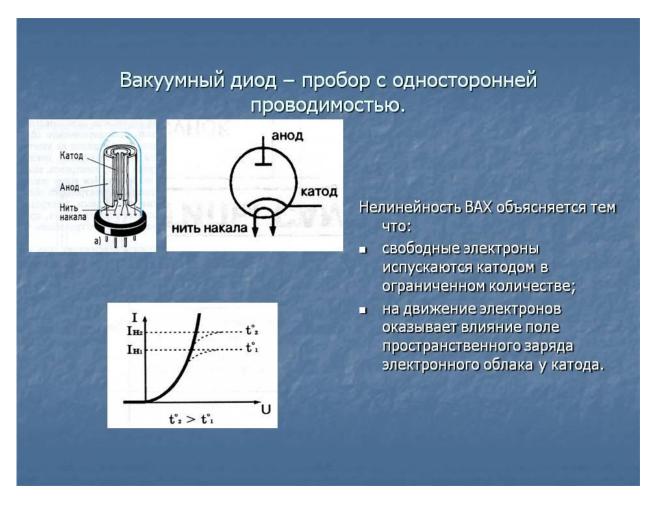
Состояние газа, при котором молекулы успевают пролететь от одной стенки сосуда к другой, ни разу не испытав соударений друг с другом, называют вакуумом.

Если в сосуд с вакуумом поместить два электрода и подключить их к источнику тока, то ток между электродами не пойдёт, так как в вакууме нет носителей заряда. Следовательно, для создания тока в трубке должен быть источник заряженных частиц.

Термоэлектронная эмиссия

Чаще всего действие такого источника заряженных частиц основано на свойстве тел, нагретых до высокой температуры, испускать электроны.

Запомни


Явление испускания электронов нагретыми металлами называется термоэлектронной эмиссией.

Это явление можно рассматривать как испарение электронов с поверхности металла. У многих твёрдых веществ термоэлектронная эмиссия начинается при температурах, при которых испарение самого вещества ещё не происходит. Такие вещества и используются для изготовления катодов.

Односторонняя проводимость. Вакуумный диод.

Явление термоэлектронной эмиссии приводит к тому, что нагретый металлический электрод, в отличие от холодного, непрерывно испускает электроны. Электроны образуют

вокруг электрода электронное облако. Электрод заряжается положительно, и под влиянием электрического поля заряженного облака электроны из облака частично возвращаются на электрод.

В равновесном состоянии число электронов, покинувших электрод в секунду, равно числу электронов, возвратившихся на электрод за это время. Чем выше температура металла, тем выше плотность электронного облака.

При подключении электродов к источнику тока между ними возникает электрическое поле. Если положительный полюс источника тока соединён с холодным электродом (анодом), а отрицательный — с нагретым (катодом), то вектор напряжённости электрического поля направлен к нагретому электроду. Под действием этого поля электроны частично покидают электронное облако и движутся к холодному электроду. Электрическая цепь замыкается, и в ней устанавливается электрический ток. При противоположной полярности включения источника напряжённость поля направлена от нагретого электрода к холодному. Электрическое поле отталкивает электроны облака назад к нагретому электроду. Цепь оказывается разомкнутой.

Односторонняя проводимость широко использовалась раньше в электронных приборах с двумя электродами — вакуумных диодах, которые служили, как и полупроводниковые диоды, для выпрямления электрического тока. Однако в настоящее время вакуумные диоды практически не применяются.

Если в аноде электронной лампы сделать отверстие, то часть электронов, ускоренных электрическим полем, пролетит в это отверстие, образуя за анодом электронный пучок. Количеством электронов в пучке можно управлять, поместив между катодом и анодом дополнительный электрод и изменяя его потенциал.

Свойства электронных пучков и их применение

Испускаемые катодом потоки электронов, движущихся в вакууме, называют иногда катодными лучами.

Перечислим свойства электронных пучков (катодных лучей).

- 1) Электроны в пучке движутся по прямым линиям.
- 2) Электронный пучок, попадая на мишень, передаёт ей часть кинетической энергии, что вызывает её нагревание. В современной технике это свойство используют для электронной плавки в вакууме сверхчистых металлов.
- 3) При торможении быстрых электронов, попадающих на вещество, возникает рентгеновское излучение. Это явление используют в рентгеновских трубках.
- 4) Некоторые вещества (стекло, сульфиды цинка и кадмия), бомбардируемые электронами, светятся. В настоящее время среди материалов этого типа (люминофоров) применяются такие, у которых в световую энергию превращается до 25% энергии электронного пучка.
- 5) Электронные пучки отклоняются электрическим полем. Например, проходя между пластинами конденсатора, электроны отклоняются от отрицательно заряженной пластины к положительно заряженной (рис. 16.20).

- 6) Электронный пучок отклоняется также в магнитном поле. Пролетая над северным полюсом магнита, электроны отклоняются влево, а пролетая над южным, отклоняются вправо. Отклонение электронных потоков, идущих от Солнца, в магнитном поле Земли приводит к тому, что свечение газов верхних слоёв атмосферы (полярное сияние) наблюдается только у полюсов.
- 7) Электронные пучки обладают ионизирующей способностью.
- 8) Электронные пучки могут проходить сквозь очень тонкие металлические пластины толщиной 0,003—0,03 мм.

Электронно-лучевая трубка

Возможность управления электронным пучком с помощью электрического или магнитного поля и свечение покрытого люминофором экрана под действием пучка применяют в электронно-лучевой трубке.

Электронно-лучевая трубка была основным элементом первых телевизоров и осциллографа — прибора для исследования быстропеременных процессов в электрических цепях (рис. 16.21).

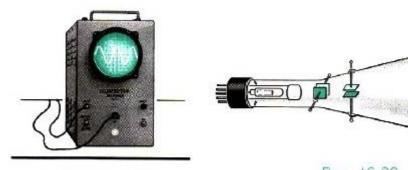
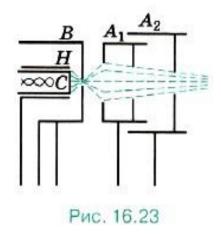



Рис. 16.21

Устройство электронно-лучевой трубки показано на рисунке 16.22. Эта трубка представляет собой вакуумный баллон, одна из стенок которого служит экраном. В узком конце трубки помещён источник быстрых электронов — электронная пушка (рис. 16.23). Она состоит из катода, управляющего электрода И анода несколько анодов располагается друг за другом). Электроны испускаются нагретым оксидным слоем с торца цилиндрического катода С, окружённого теплозащитным экраном Н. Далее они проходят через отверстие в цилиндрическом управляющем электроде В (он регулирует число

электронов в пучке). Каждый анод (A1 и A2) состоит из дисков с небольшими отверстиями. Эти диски вставлены в металлические цилиндры. Между первым анодом и катодом создаётся разность потенциалов в сотни и даже тысячи вольт. Сильное электрическое поле ускоряет электроны, и они приобретают большую скорость. Форма, расположение и потенциалы анодов выбирают так, чтобы наряду с ускорением электронов осуществлялась и фокусировка электронного пучка, т. е. уменьшение площади поперечного сечения пучка на экране почти до точечных размеров.

На пути к экрану пучок последовательно проходит между двумя парами управляющих пластин, подобных пластинам плоского конденсатора (см. рис. 16.22). Если электрического поля между пластинами нет, то пучок не отклоняется и светящаяся точка располагается в центре экрана. При сообщении разности потенциалов вертикально расположенным пластинам пучок смещается в горизонтальном направлении, а при сообщении разности потенциалов горизонтальным пластинам он смещается в вертикальном направлении.

Одновременное использование двух пар пластин позволяет перемещать светящуюся точку по экрану в любом направлении. Так как масса электронов очень мала, то они почти мгновенно, т. е. за очень короткое время, реагируют на изменение разности потенциалов управляющих пластин.

В настоящее время чаще используются телевизоры с жидкокристаллическим или плазменным экраном.

В электронно-лучевой трубке, применяемой в телевизоре (так называемом кинескопе), управление пучком, созданным электронной пушкой, осуществляется с помощью магнитного поля. Это поле создают катушки, надетые на горловину трубки (рис. 16.24).

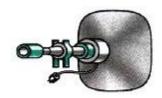


Рис. 16.24

Цветной кинескоп содержит три разнесённые электронные пушки и экран мозаичной структуры, составленный из люминофоров трёх типов (красного, синего и зелёного свечения). Каждый электронный пучок возбуждает люминофоры одного типа, свечение которых в совокупности даёт на экране цветное изображение.

UHTEPECHO Электронно-лучевые трубки широко применялись в устройствах, присоединяемых К электронновычислительным машинам (ЭВМ). На экран дисплея, подобный экрану телевизора, поступала информация, записанная переработанная ЭВМ. Можно было непосредственно видеть текст на любом языке, графики различных процессов, изображения реальных объектов, также воображаемые a подчиняющиеся законам, записанным в программе вычислительной машины.

.....

Контрольные вопросы:

- 1. Для какой цели в электронных лампах создают вакуум?
- 2. Наблюдается ли термоэлектронная эмиссия в диэлектриках?
- 3. Как осуществляется управление электронными пучками?
- 4. Как устроена электронно-лучевая трубка?

Литература:

Мякишев Γ . Я. Физика 10 класс. Учебник для общеобразовательных учреждений. М., \$117 упр. 1-2 \$118 упр. 1-2